Overview of Full Factorial Design
In a full factorial design, you perform an experimental run at every combination of the factor levels. The sample size is the product of the numbers of levels of the factors. For example, a factorial experiment with a two-level factor, a three-level factor, and a four-level factor has 2 x 3 x 4 = 24 runs.
The Full Factorial Design platform supports both continuous factors and categorical factors with arbitrary numbers of levels. It is assumed that you can run the trials in a completely random fashion.
Full factorial designs are the most conservative of all design types. Unfortunately, because the sample size grows exponentially with the number of factors, full factorial designs are often too expensive to run. ...
Get JMP 13 Design of Experiments Guide now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.