How to do it...

Let's first look at how we will build the model from the input of MNIST images coming in batches:

input_shape = (28, 28)inputs = Input(input_shape)print(input_shape + (1, ))# add one more dimension for convolutionx = Reshape(input_shape + (1, ), input_shape=input_shape)(inputs)conv1 = Conv2D(14, kernel_size=4, activation='relu')(x)pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)conv2 = Conv2D(7, kernel_size=4, activation='relu')(pool1)pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)flatten = Flatten()(pool2)output = Dense(10, activation='sigmoid')(flatten)model = Model(inputs=inputs, outputs=output)

We start with the input_shape of (28, 28). This is used to define the input layer:

inputs = Input(input_shape)

Then we add another ...

Get Keras Deep Learning Cookbook now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.