第1章 神经网络基础
人工神经网络表示一类机器学习的模型,最初是受到了哺乳动物中央神经系统研究的启发。网络由相互连接的分层组织的神经元组成,这些神经元在达到一定条件时就会互相交换信息(专业术语是激发(fire))。最初的研究开始于20世纪50年代后期,当时引入了感知机(Perceptron)模型(更多信息请参考文章《The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain》,作者F. Rosenblatt,Psychological Review,vol. 65,pp. 386~408,1958)。感知机是一个可以实现简单操作的两层网络,并在20世纪60年代后期引入反向传播算法(backpropagation algorithm)后得到进一步扩展,用于高效的多层网络的训练(据以下文章《Backpropagation through Time: What It Does and How to Do It》,作者P. J. Werbos,Proceedings of the IEEE, vol. 78,pp. 1550~1560,1990;《A Fast Learning Algorithm for Deep Belief Nets》,作者G. E. Hinton,S. Osindero,Y. W. Teh,Neural Computing,vol. 18,pp. 1527~1554,2006)。有些研究认为这些技术起源可以追溯到比通常引述的更早的时候(更多信息,请参考文章《Deep Learning in Neural Networks: An Overview》,作者J. ...
Get Keras深度学习入门与实践 now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.