Chapter 11: Deploying Machine Learning Models

In the previous chapters, we've deployed models in the simplest way possible: by configuring an estimator, calling the fit() API to train the model, and calling the deploy() API to create a real-time endpoint. This is undoubtedly the preferred scenario for development and testing, but it's not the only one.

Models can be imported. For example, you could take an existing model that you trained on your local machine, import it into SageMaker, and deploy it as if you had it trained on SageMaker.

In addition, models can be deployed in different configurations:

  • A single model on a real-time endpoint, which is what we've done so far, as well as several model variants in the same endpoint.
  • A sequence of ...

Get Learn Amazon SageMaker now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.