In order to demonstrate some of these concepts in a practical manner, let's look at an example scenario where we use ML to solve a game problem. In our game, we have a cannon that shoots a projectile at a specific velocity in a physics-based world. The object of the game is to choose the velocity to hit the target at a specific distance. We have already fired the cannon ten times and recorded the results in a table and chart, as shown in the following screenshot:
Since the data is labelled already, this problem is well-suited for Supervised Training. We will use a very simple method ...