O'Reilly logo

Learning Bayesian Models with R by Dr. Hari M. Koduvely

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

The brnn R package

The brnn package was developed by Paulino Perez Rodriguez and Daniel Gianola, and it implements the two-layer Bayesian regularized neural network described in the previous section. The main function in the package is brnn( ) that can be called using the following command:

>brnn(x,y,neurons,normalize,epochs,…,Monte_Carlo,…)

Here, x is an n x p matrix where n is the number of data points and p is the number of variables; y is an n dimensional vector containing target values. The number of neurons in the hidden layer of the network can be specified by the variable neurons. If the indicator function normalize is TRUE, it will normalize the input and output, which is the default option. The maximum number of iterations during model ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required