Skip to Content
Learning Probabilistic Graphical Models in R
book

Learning Probabilistic Graphical Models in R

by David Bellot
April 2016
Beginner to intermediate
250 pages
5h 38m
English
Packt Publishing
Content preview from Learning Probabilistic Graphical Models in R

Chapter 7. Probabilistic Mixture Models

We have seen an initial example of mixture models, namely the Gaussian mixture model, in which we had a finite number of Gaussians to represent a dataset. In this chapter, we will focus on more advanced examples of mixture models, going again from the Gaussian mixture model to the Latent Dirichlet Allocation. The reason for so many models is that we want to capture various aspects of the data that are not easily captured by a mixture of Gaussian.

In many cases, we will use the EM algorithm to find the parameters of the model from the data. Also, it appears that most of the mixture models can have intractable solutions and need solutions on approximate inferences.

The first type of model we will see is a mixture ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781784392055Supplemental Content