Video description
Gain an in-depth understanding of data analysis with various Python packages
About This Video
- Learn data analysis, manipulation, and visualization using the pandas library
- Create statistical plots using Matplotlib and Seaborn to help you get insights into real-size patterns hidden in data
- Gain an in-depth understanding of the various Python packages to perform data analysis and implement effective machine learning models
In Detail
Python is an open source community-supported, general-purpose programming language that, over the years, has also become one of the bastions of data science. Thanks to its flexibility and vast popularity, data analysis, visualization, and machine learning can be easily carried out with Python. This course will help you learn the tools necessary to deploy its features for data science applications.
In this course, you will learn all the necessary libraries that make data analytics with Python rewarding and effective. You will get into hands-on data analysis and machine learning by coding in Python. You will also learn the NumPy library used for numerical and scientific computation. You will employ useful libraries for visualization (Matplotlib and Seaborn) to provide insights into data. Further, you will learn various steps involved in building an end-to-end machine learning solution. The ease of use and efficiency of these tools will help you learn these topics very quickly. The video course is prepared with applications in mind. You will explore coding on real-life datasets, to enable you to utilize your learning within your own projects.
By the end of this course, you’ll have progressed through a journey from data cleaning and preparation to creating summary tables, and from visualization to machine learning and prediction. This video course will prepare you to enter the world of data science. Welcome to our journey!
This course uses Python 3.6, while not the latest version available, it provides relevant and informative content for legacy users of Python.
Audience
This is an introductory-level course for aspiring data scientists who have a basic understanding of coding in Python and little to no knowledge of data analytics. If you already know Python, or another programming language and want to add Python to your skill set, then this course will also be useful. Knowledge of intro-level programming topics such as variables, if-else constructs, for and while loops, and functions is recommended but not required.
Publisher resources
Table of contents
- Chapter 1 : Beginning the Data Science Journey
- Chapter 2 : Introducing Jupyter
- Chapter 3 : Understanding Numerical Operations with NumPy
- Chapter 4 : Data Preparation and Manipulation with Pandas
- Chapter 5 : Visualizing Data with Matplotlib and Seaborn
- Chapter 6 : Introduction to Machine Learning and Scikit-learn
- Chapter 7 : Building Machine Learning Models with Scikit-learn
- Chapter 8 : Model Evaluation and Selection
Product information
- Title: Learning Python for Data Science
- Author(s):
- Release date: July 2018
- Publisher(s): Packt Publishing
- ISBN: 9781785886928
You might also like
book
Grokking Artificial Intelligence Algorithms
Grokking Artificial Intelligence Algorithms uses illustrations, exercises, and jargon-free explanations to teach fundamental AI concepts. All …
book
40 Algorithms Every Programmer Should Know
Learn algorithms for solving classic computer science problems with this concise guide covering everything from fundamental …
book
Machine Learning for Decision Makers: Cognitive Computing Fundamentals for Better Decision Making
Take a deep dive into the concepts of machine learning as they apply to contemporary business …
book
The Machine Learning Solutions Architect Handbook
Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning …