Skip to Content
Learning Spark
book

Learning Spark

by Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia
February 2015
Intermediate to advanced
276 pages
7h 18m
English
O'Reilly Media, Inc.
Content preview from Learning Spark

Chapter 3. Programming with RDDs

This chapter introduces Spark’s core abstraction for working with data, the resilient distributed dataset (RDD). An RDD is simply a distributed collection of elements. In Spark all work is expressed as either creating new RDDs, transforming existing RDDs, or calling operations on RDDs to compute a result. Under the hood, Spark automatically distributes the data contained in RDDs across your cluster and parallelizes the operations you perform on them.

Both data scientists and engineers should read this chapter, as RDDs are the core concept in Spark. We highly recommend that you try some of these examples in an interactive shell (see “Introduction to Spark’s Python and Scala Shells”). In addition, all code in this chapter is available in the book’s GitHub repository.

RDD Basics

An RDD in Spark is simply an immutable distributed collection of objects. Each RDD is split into multiple partitions, which may be computed on different nodes of the cluster. RDDs can contain any type of Python, Java, or Scala objects, including user-defined classes.

Users create RDDs in two ways: by loading an external dataset, or by distributing a collection of objects (e.g., a list or set) in their driver program. We have already seen loading a text file as an RDD of strings using SparkContext.textFile(), as shown in Example 3-1.

Example 3-1. Creating an RDD of strings with textFile() in Python
>>> lines = sc.textFile("README.md")

Once created, RDDs offer two types of ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning Spark, 2nd Edition

Learning Spark, 2nd Edition

Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee
Learning PySpark

Learning PySpark

Tomasz Drabas, Denny Lee
Spark: The Definitive Guide

Spark: The Definitive Guide

Bill Chambers, Matei Zaharia
High Performance Spark, 2nd Edition

High Performance Spark, 2nd Edition

Holden Karau, Adi Polak, Rachel Warren

Publisher Resources

ISBN: 9781449359034Errata PageSupplemental Content