3.2 Subspaces
Given a vector space V, it is often possible to form another vector space by taking a subset S of V and using the operations of V. Since V is a vector space, the operations of addition and scalar multiplication always produce another vector in V. For a new system using a subset S of V as its universal set to be a vector space, the set S must be closed under the operations of addition and scalar multiplication. That is, the sum of two elements of S must always be an element of S, and the product of a scalar and an element of S must always be an element of S.
Example 1
Let
S is a subset of . If
is any element of S and is any scalar, then
is also an element of S. If
Get Linear Algebra with Applications, 10th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.