O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Linear Integrated Circuits

Book Description

This book provides (a) students with good in-depth and complete study material that is easy to learn and gain mastery of the subject of 'LIC', subscribing fully to university course syllabus and later in their professional career, (b) teaching faculty find complete subject material easy to impart in the classrooms and build strong foundation for the students, and (c) practitioners in the area who need to refer back to a seemingly simple concept that needs clarity and reinforcement while working on live projects

Table of Contents

  1. Cover
  2. Title Page
  3. Contents
  4. Preface
  5. About the Authors
  6. Acknowledgements
  7. 1. Fundamentals of Integrated Circuits
    1. 1.1 Introduction
    2. 1.2 History
    3. 1.3 Introduction to ICs
    4. 1.4 Classification of ICs
    5. 1.5 Advantages of IC Over Discrete Components
    6. 1.6 Basic Concepts of IC Fabrication Using Monolithic IC Technology
    7. 1.7 Fabrication Process of a Simple N-type MOSFET
    8. 1.8 Basic Structural Details of MOSFET (MOSFET Fabrication in IC Form)
    9. 1.9 Semiconductor Diode
    10. 1.10 Integrated Circuit (IC) Resistors and Capacitors
    11. 1.11 Junction Field Effect Transistor (n-Channel Fet)
    12. 1.12 Bipolar Junction Transistor
    13. 1.13 Application-specific IC
    14. 1.14 IC Assembly and Packaging
    15. 1.15 Overview and Interpretation of Data Sheets of Operational Amplifiers
    16. 1.16 Device Identification
    17. 1.17 Pin Identification and Temperature Ranges
    18. Summary
    19. Questions for Practice
  8. 2. Fundamentals of Operational Amplifiers
    1. 2.1 Introduction
    2. 2.2 Introduction to Operational Amplifier
    3. 2.3 Block Diagram of an Operational Amplifier
    4. 2.4 BJT (Bipolar Junction Transistor) Differential Amplifier
    5. 2.5 Different Methods to Improve CMRR of Differential Amplifier
    6. 2.6 Basic Building Blocks of an Operational Amplifier
    7. 2.7 Analysis of Ideal Operational Amplifier
    8. 2.8 Pin Configuration of Operational Amplifiers µA 741 IC
    9. 2.9 Schematic Diagram of Operational Amplifier
    10. 2.10 Characteristic Features of an Ideal Operational Amplifier
    11. 2.11 Common-Mode Rejection Ratio (CMRR)
    12. 2.12 Input Bias and Offset Current
    13. 2.13 Output Offset Voltage
    14. 2.14 Minimization (Elimination) of Output Offset Voltage
    15. 2.15 Maximum Ratings of Operational Amplifier
    16. 2.16 Frequency Responses of Operational Amplifiers
    17. 2.17 Effect of Finite GBP on Integrated Circuits
    18. 2.18 Powering OP Amps
    19. 2.19 Slew Rate and Methods of Improving Slew Rate
    20. Points to Remember
    21. Summary
    22. Questions for Practice
    23. Multiple-choice Questions
  9. 3. Linear Applications of Operational Amplifier
    1. 3.1 Introduction
    2. 3.2 Operational Amplifier IC
    3. 3.3 Sign Changer (Inverting Voltage Amplifier) (Current Shunt Feedback Amplifier)
    4. 3.4 Scale Changer
    5. 3.5 Non-inverting Amplifier (Current Series Feedback Amplifier)
    6. 3.6 Cascaded (Multistage Amplifier) Amplifier
    7. 3.7 Difference (Differential) Amplifier
    8. 3.8 Instrumentation Amplifier
    9. 3.9 Analog Computer to Solve Differential Equations Simulating a System Model
    10. 3.10 Four-quadrant Multiplier (IC Multiplier)
    11. 3.11 Current-to-voltage Converter (Transresistance Amplifier)
    12. 3.12 Voltage-to-current Converter with Floating Load
    13. 3.13 Grounded Load Voltage to Current (V–I) Converter
    14. 3.14 Sample and Hold Amplifier
    15. 3.15 Clipper Circuit
    16. 3.16 Clamper Circuit
    17. 3.17 Voltage to Frequency and Frequency to Voltage Converter IC
    18. Points to Remember
    19. Summary
    20. Questions for Practice
    21. Multiple-choice Questions
  10. 4. Non-Linear Applications of OP Amp
    1. 4.1 Introduction
    2. 4.2 Voltage Comparator
    3. 4.3 OP Amp Voltage Comparator
    4. 4.4 Different Types of Comparator ICs
    5. 4.5 Comparator Applications
    6. 4.6 Schmitt Trigger (Regenerative Comparator)
    7. 4.7 Inverting Schmitt Trigger
    8. 4.8 Wave Shaping of Output Signal Using Adjustable LTP and UTP
    9. 4.9 Non-inverting Schmitt Trigger
    10. 4.10 Adjustable UTP/LTP Schmitt Trigger
    11. 4.11 Multivibrators
    12. 4.12 Precision Rectifiers
    13. 4.13 Peak Detector Circuits
    14. Points to Remember
    15. Summary
    16. Questions for Practice
    17. Multiple-choice Questions
  11. 5. Oscillators and Waveform Generators
    1. 5.1 Introduction
    2. 5.2 Oscillator Fundamentals
    3. 5.3 Oscillator Using OP Amp
    4. 5.4 RC Phase-shift Oscillator
    5. 5.5 Wien Bridge Oscillator
    6. 5.6 High Frequency Oscillator Circuits
    7. 5.7 Quadrature Oscillator
    8. 5.8 Square Waveform Generator
    9. 5.9 Free-running Ramp Waveform Generator
    10. 5.10 Triangular Waveform Generator
    11. 5.11 Voltage-Controlled Oscillator
    12. 5.12 Waveform Generator IC L8038
    13. Points to Remember
    14. Summary
    15. Questions for Practice
    16. Multiple-choice Questions
  12. 6. 555 Timer and Its Applications
    1. 6.1 Introduction
    2. 6.2 555 IC Timer
    3. 6.3 Astable Multivibrator
    4. 6.4 Monostable Multivibrator
    5. 6.5 Ramp Generator
    6. 6.6 Bistable Mode (Schmitt Trigger) Operation of 555 Timer
    7. 6.7 Pulse-Width Modulator (PWM) Circuit
    8. 6.8 Pulse-Position Modulator (PPM) Circuit
    9. 6.9 Waveform Generator—IC 8038
    10. Points to Remember
    11. Summary
    12. Questions for Practice
    13. Multiple-choice Questions
  13. 7. Phase-Locked Loop and Its Applications
    1. 7.1 Introduction
    2. 7.2 Phase-Locked Loop (PLL)
    3. 7.3 Frequency Multiplier (Frequency Synthesizer)
    4. 7.4 Analog Frequency Multiplier (AFM)
    5. 7.5 Amplitude Modulation Detector
    6. 7.6 Frequency Modulation Detector
    7. 7.7 Phase Shifter
    8. 7.8 Frequency Shift Keying Detector
    9. 7.9 Tracking Filter Using Phase-Locked Loop
    10. 7.10 Frequency (Signal) Synchronizer
    11. 7.11 Digital Phase-Locked Loop (DPLL)
    12. 7.12 Software or Discrete Time Signal Based Phase-Locked Loop
    13. Points to Remember
    14. Summary
    15. Questions for Practice
    16. Multiple-choice Questions
  14. 8. IC Voltage Regulator and DC Power Supply Circuits
    1. 8.1 Introduction
    2. 8.2 Basic Building Blocks of Linear IC Voltage Regulators
    3. 8.3 Series Voltage Regulator Circuit Using Operational Amplifier
    4. 8.4 Three-terminal Voltage Regulators (LM 7805 and LM 7905)
    5. 8.5 Voltage Regulators (LM 317 and LM 337)
    6. 8.6 Dual Power Supply Circuits
    7. 8.7 Precision Voltage Regulators
    8. 8.8 Switching Regulator and Switched-mode Power Supply
    9. Points to Remember
    10. Summary
    11. Questions for Practice
    12. Multiple-choice Questions
  15. 9. Passive and Active Filters
    1. 9.1 Introduction
    2. 9.2 Concept of Filter Circuit Using Passive ‘RCL’ Components
    3. 9.3 Transfer Function Concept, Analysis, and Design
    4. 9.4 First-order Active Filters
    5. 9.5 Active Low-pass Butterworth Filter
    6. 9.6 Active High-pass Butterworth Filter
    7. 9.7 Switched Capacitor Filters
    8. 9.8 Active Band-pass Filter
    9. 9.9 Active Band Rejection (Stop) Filter
    10. 9.10 All-pass Filter
    11. 9.11 Multiple Feedback Filters (IGMF Filters)
    12. 9.12 State Variable Filters
    13. Points to Remember
    14. Summary
    15. Questions for Practice
    16. Multiple-choice Questions
  16. 10. Analog to Digital and Digital to Analog Data Converters
    1. 10.1 Introduction
    2. 10.2 Analog to Digital Data Converters
    3. 10.3 Parallel Comparator (Flash) Type Analog to Digital Converter
    4. 10.4 Counter or Tracking Type Analog to Digital Converter
    5. 10.5 Successive Approximation Type Analog to Digital Converter
    6. 10.6 Single Slope Type Analog to Digital Converter
    7. 10.7 Dual Slope Type Analog to Digital Converter
    8. 10.8 Digital to Analog Conversion Techniques
    9. 10.9 Binary Weighted Resistor Type Digital to Analog Converter
    10. 10.10 R-2R Ladder with Operational Amplifier Type Digital to Analog Converter
    11. 10.11 Inverted R-2R Ladder Digital to Analog Converter
    12. 10.12 Digital to Analog Converter with Memory
    13. 10.13 IC 1408/1508 Digital to Analog Converter
    14. 10.14 Specifications for Integrated Circuits Used in Digital to Analog Converters and Analog to Digital Converters
    15. Points to Remember
    16. Summary
    17. Questions for Practice
    18. Multiple-choice Questions
  17. 11. Introduction to Digital Integrated Circuits
    1. 11.1 Introduction to Integrated Circuits
    2. 11.2 Classification of Integrated Circuits
    3. 11.3 Classification of Logic Families
    4. 11.4 Standard TTL Nand Gate: Analysis and Characteristics
    5. 11.5 Standard TTL Gate Circuit Parameters
    6. 11.6 TTL Open-collector Outputs
    7. 11.7 Tristate TTL Output Stage
    8. 11.8 Metal Oxide Semiconductor (MOS) FET Switches in Logic Gates
    9. Points to Remember
    10. Summary
    11. Questions for Practice
    12. Multiple-choice Questions
  18. 12. Circuit Design and Simulation Using PSpice®
    1. 12.1 Introduction
    2. 12.2 PSPICE Workspace and Wiring the Circuit