O'Reilly logo

LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks by Najah Abu Ali, Hossam S. Hassanein, Abd-Elhamid M. Taha

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Why IMT-Advanced

3G networks faced elemental issues in trying to accommodate the projected demand for mobile Internet service. One such issue is the high cost of either expanding the network or the network operation in general. Such costs became a substantial consideration when addressing the 3G network performance in densely populated areas or when trying to overcome coverage deadspots. Of particular importance is the performance at the cell-edge, that is, connection quality at overlaps between the coverage areas of neighboring cells, which have been repeatedly remarked to be low in 3G networks. Such problems would usually be addressed by increasing the deployment of Base Stations (BS), which in addition to their high costs entail additional interconnection and frequency optimization challenges.

image

Figure 1.2 IMT-Advanced Timeline.

Certain performance aspects of 3G networks were also expected to be more pronounced. Some aspects were due to the scaling properties of the 3G networks, for example, delay performance due to increased traffic demand. The general support for different levels of mobility also suffered greatly in WCDMA-based networks. Perhaps most critical was the indoors and deadspot performance of 3G networks, especially when various studies have indicated that the bulk of network usage is made while being at either the office or at home.

Combined, the above issues made ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required