Skip to Content
Machine Learning: End-to-End guide for Java developers
book

Machine Learning: End-to-End guide for Java developers

by Richard M. Reese, Jennifer L. Reese, Boštjan Kaluža, Dr. Uday Kamath, Krishna Choppella
October 2017
Intermediate to advanced
1159 pages
26h 10m
English
Packt Publishing
Content preview from Machine Learning: End-to-End guide for Java developers

Understanding dynamic neural networks

Dynamic neural networks differ from static networks in that they continue learning after the training phase. They can make adjustments to their structure independently of external modification. A feedforward neural network (FNN) is one of the earliest and simplest dynamic neural networks. This type of network, as its name implies, only feeds information forward and does not form any cycles. This type of network formed the foundation for much of the later work in dynamic ANNs. We will show in-depth examples of two types of dynamic networks in this section, MLP networks and SOMs.

Multilayer perceptron networks

A MLP network is a FNN with multiple layers. The network uses supervised learning with backpropagation ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

DevOps Tools for Java Developers

DevOps Tools for Java Developers

Stephen Chin, Melissa McKay, Ixchel Ruiz, Baruch Sadogursky

Publisher Resources

ISBN: 9781788622219Supplemental Content