Skip to Content
Machine Learning Engineering in Action
book

Machine Learning Engineering in Action

by Ben Wilson
April 2022
Intermediate to advanced
576 pages
18h 11m
English
Manning Publications
Content preview from Machine Learning Engineering in Action

8 Experimentation in action: Finalizing an MVP with MLflow and runtime optimization

This chapter covers

  • Approaches, tools, and methods to version-control ML code, models, and experiment results
  • Scalable solutions for model training and inference

In the preceding chapter, we arrived at a solution to one of the most time-consuming and monotonous tasks that we face as ML practitioners: fine-tuning models. By having techniques to solve the tedious act of tuning, we can greatly reduce the risk of producing ML-backed solutions that are inaccurate to the point of being worthless. In the process of applying those techniques, however, we quietly welcomed an enormous elephant into the room of our project: tracking.

Throughout the last several chapters, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Feature Engineering for Machine Learning

Feature Engineering for Machine Learning

Alice Zheng, Amanda Casari
Kubeflow for Machine Learning

Kubeflow for Machine Learning

Trevor Grant, Holden Karau, Boris Lublinsky, Richard Liu, Ilan Filonenko

Publisher Resources

ISBN: 9781617298714Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentPurchase Link