Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

A logistic regressor

As we just explained, the simplest neural network is a logistic regressor. A logistic regression takes in values of any range but only outputs values between zero and one.

There is a wide range of applications where logistic regressors are suitable. One such example is to predict the likelihood of a homeowner defaulting on a mortgage.

We might take all kinds of values into account when trying to predict the likelihood of someone defaulting on their payment, such as the debtor's salary, whether they have a car, the security of their job, and so on, but the likelihood will always be a value between zero and one. Even the worst debtor ever cannot have a default likelihood above 100%, and the best cannot go below 0%.

The following ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content