Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

Observational fairness

Equality is often seen as a purely qualitative issue, and as such, it's often dismissed by quantitative-minded modelers. As this section will show, equality can be seen from a quantitative perspective, too. Consider a classifier, c, with input X, some sensitive input, A, a target, Y and output C. Usually, we would denote the classifier output as Observational fairness, but for readability, we follow CS 294 and name it C.

Let's say that our classifier is being used to decide who gets a loan. When would we consider this classifier to be fair and free of bias? To answer this question, picture two demographics, group A and B, both loan applicants. Given ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content