Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

Training to be fair

There are multiple ways to train models to be fairer. A simple approach could be using the different fairness measures that we have listed in the previous section as an additional loss. However, in practice, this approach has turned out to have several issues, such as having poor performance on the actual classification task.

An alternative approach is to use an adversarial network. Back in 2016, Louppe, Kagan, and Cranmer published the paper Learning to Pivot with Adversarial Networks, available at https://arxiv.org/abs/1611.01046. This paper showed how to use an adversarial network to train a classifier to ignore a nuisance parameter, such as a sensitive feature.

In this example, we will train a classifier to predict whether ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content