Book description
To succeed with machine learning or deep learning, you must handle the logistics well. Simply put, you need an effective management system for overall data flow and the evaluation and deployment of multiple models as they move from prototype to production. Without that, your project will most likely fail. This report examines what you need for effective data and model management in real-world settings, including globally distributed cloud or on-premises systems.
Authors Ted Dunning and Ellen Friedman introduce the rendezvous architecture, an innovative design to help you handle machine-learning logistics. This approach not only paves the way to successful long-term management, it also frees up your time and effort to focus on the machine learning process itself and on how to take action on results.
This report provides a basic, non-technical view of what makes the approach work, as well as in-depth technical details. The report is ideal for data scientists, architects, developers, ops teams, and project managers, whether your team is planning to build a machine learning system, or currently has one underway.
You will learn:
- The issues in machine learning logistics you need to consider when designing and implementing your system
- How the rendezvous architecture leverages streaming data, provides hot hand-off of new models, and collects diagnostic data
- Practical tips for comparing live models, including the role of decoys, canaries and the t-digest
- Best practices for maintaining performance after deployment
Table of contents
- Preface
- 1. Why Model Management?
- 2. What Matters in Model Management
- 3. The Rendezvous Architecture for Machine Learning
- 4. Managing Model Development
- 5. Machine Learning Model Evaluation
- 6. Models in Production
- 7. Meta Analytics
- 8. Lessons Learned
- A. Additional Resources
Product information
- Title: Machine Learning Logistics
- Author(s):
- Release date: October 2017
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781491997611
You might also like
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. …
book
Python for Data Analysis, 3rd Edition
Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python …
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. …
book
Interactive Dashboards and Data Apps with Plotly and Dash
Build web-based, mobile-friendly analytic apps and interactive dashboards with Python Key Features Develop data apps and …