Book description
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
- Classification, using the Titanic dataset
- Cleaning data and dealing with missing data
- Exploratory data analysis
- Common preprocessing steps using sample data
- Selecting features useful to the model
- Model selection
- Metrics and classification evaluation
- Regression examples using k-nearest neighbor, decision trees, boosting, and more
- Metrics for regression evaluation
- Clustering
- Dimensionality reduction
- Scikit-learn pipelines
Table of contents
- Preface
- 1. Introduction
- 2. Overview of the Machine Learning Process
- 3. Classification Walkthrough: Titanic Dataset
- 4. Missing Data
- 5. Cleaning Data
- 6. Exploring
- 7. Preprocess Data
- 8. Feature Selection
- 9. Imbalanced Classes
- 10. Classification
- 11. Model Selection
- 12. Metrics and Classification Evaluation
- 13. Explaining Models
- 14. Regression
- 15. Metrics and Regression Evaluation
- 16. Explaining Regression Models
- 17. Dimensionality Reduction
- 18. Clustering
- 19. Pipelines
- Index
Product information
- Title: Machine Learning Pocket Reference
- Author(s):
- Release date: August 2019
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781492047544
You might also like
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. …
book
Training Data for Machine Learning
Your training data has as much to do with the success of your data project as …
book
Python for Data Analysis, 3rd Edition
Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python …
book
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. …