1Applications of VLSI Design in Artificial Intelligence and Machine Learning

Imran Ullah Khan, Nupur Mittal* and Mohd. Amir Ansari

Dept. of Electronics and Communication Engineering, Integral University, Lucknow, India

Abstract

In our advanced times, complementary metal-oxide semiconductor (CMOS) based organizations like semiconductor and gadgets face extreme scheduling of products and other different pressures. For resolving this issue, electronic design automation (EDA) must provide “design-based equivalent scaling” to continue the critical industry trajectory. For solving this problem machine learning techniques should be used both inside and “peripherally” in the design tools and flows. This article reviews machine learning opportunities, and physical implementation of IC will also be discussed. Cloud intelligence-enabled machine learning-based data analytics has surpassed the scalability of current computing technologies and architectures. The current methods based on deep learning are inefficient, require a lot of data and power consumption, and run on a data server with a long delay. With the advent of self-driving cars, unmanned aerial vehicles and robotics, there is a huge need to analyze only the necessary sensory data with low latency and low power consumption on edge devices. In this discussion, we will talk about effective AI calculations, for example, fast least squares, binary and tensor convolutional neural organization techniques, and compare prototype accelerators ...

Get Machine Learning Techniques for VLSI Chip Design now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.