Chapter 13. Linear Regression
13.0 Introduction
Linear regression is one of the simplest supervised learning algorithms in our toolkit. If you have ever taken an introductory statistics course in college, likely the final topic you covered was linear regression. In fact, it is so simple that it is sometimes not considered machine learning at all! Whatever you believe, the fact is that linear regression—and its extensions—continues to be a common and useful method of making predictions when the target vector is a quantitative value (e.g., home price, age). In this chapter we will cover a variety of linear regression methods (and some extensions) for creating well-performing prediction models.
13.1 Fitting a Line
Problem
You want to train a model that represents a linear relationship between the feature and target vector.
Solution
Use a linear regression (in scikit-learn, LinearRegression
):
# Load libraries
from
sklearn.linear_model
import
LinearRegression
from
sklearn.datasets
import
load_boston
# Load data with only two features
boston
=
load_boston
()
features
=
boston
.
data
[:,
0
:
2
]
target
=
boston
.
target
# Create linear regression
regression
=
LinearRegression
()
# Fit the linear regression
model
=
regression
.
fit
(
features
,
target
)
Discussion
Linear regression assumes that the relationship between the features and the target vector is approximately linear. That is, the effect (also called coefficient, weight, or parameter) of the features on the target vector is constant. ...
Get Machine Learning with Python Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.