Skip to Content
Machine Learning with R, the tidyverse, and mlr
book

Machine Learning with R, the tidyverse, and mlr

by Hefin Rhys
April 2020
Intermediate to advanced
536 pages
16h 55m
English
Manning Publications
Content preview from Machine Learning with R, the tidyverse, and mlr

Chapter 4. Classifying based on odds with logistic regression

This chapter covers

  • Working with the logistic regression algorithm
  • Understanding feature engineering
  • Understanding missing value imputation

In this chapter, I’m going to add a new classification algorithm to your toolbox: logistic regression. Just like the k-nearest neighbors algorithm you learned about in the previous chapter, logistic regression is a supervised learning method that predicts class membership. Logistic regression relies on the equation of a straight line and produces models that are very easy to interpret and communicate.

Logistic regression can handle continuous (without discrete categories) and categorical (with discrete categories) predictor variables. In its ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
R Machine Learning Projects

R Machine Learning Projects

Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781617296574Publisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link