O'Reilly logo

Machine Learning with R by Brett Lantz

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Understanding Support Vector Machines

A Support Vector Machine (SVM) can be imagined as a surface that defines a boundary between various points of data which represent examples plotted in multidimensional space according to their feature values. The goal of an SVM is to create a flat boundary, called a hyperplane, which leads to fairly homogeneous partitions of data on either side. In this way, SVM learning combines aspects of both the instance-based nearest neighbor learning presented in Chapter 3, Lazy Learning – Classification Using Nearest Neighbors, and the linear regression modeling described in Chapter 6, Forecasting Numeric Data – Regression Methods. The combination is extremely powerful, allowing SVMs to model highly complex relationships. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required