Interpreting the movie clusters

In this section, we review the code where we get the predictions for each label and save them in a text file and draw a two-dimensional scatter plot.

We will create two scatter plots, one for users and the other for items (which is movies in this case):

object MovieLensKMeansPersist {   val BASE= "./data/movie_lens_libsvm_2f"   val time = System.currentTimeMillis()   val formatter = new SimpleDateFormat("dd_MM_yyyy_hh_mm_ss")   import java.util.Calendar   val calendar = Calendar.getInstance()   calendar.setTimeInMillis(time)   val date_time = formatter.format(calendar.getTime())   def main(args: Array[String]): Unit = {     val spConfig = (     new SparkConf).setMaster("local[1]").     setAppName("SparkApp").  set("spark.driver.allowMultipleContexts", ...

Get Machine Learning with Spark - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.