How it works...

The neural network is a network made up of artificial neurons (or nodes). There are three types of neurons within the network: input neurons, hidden neurons, and output neurons. In the network, neurons are connected; the connection strength between neurons is called weight. If the weight is greater than zero, it is in an excitation status. Otherwise, it is in an inhibition status. Input neurons receive the input information; the higher the input value, the greater the activation. Then, the activation value is passed through the network in regard to weights and transfer functions in the graph. The hidden neurons (or output neurons) then sum up the activation values and modify the summed values with the transfer function. The ...

Get Machine Learning with R Cookbook - Second Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.