Machine Learning Pipelines and MLOps with LightGBM

This chapter shifts the focus from data science and modeling problems to building production services for our ML solutions. We introduce the concept of machine learning pipelines, a systematic approach to processing data, and building models that ensure consistency and correctness.

We also introduce the concept of MLOps, a practice that blends DevOps and ML and addresses the need to deploy and maintain production-capable ML systems.

The chapter includes an example of building an ML pipeline using scikit-learn, encapsulating data processing, model building, and tuning. We show how to wrap the pipeline in a web API, exposing a secure endpoint for prediction. Finally, we also look at the containerization ...

Get Machine Learning with LightGBM and Python now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.