Skip to Main Content
Machine Learning
book

Machine Learning

by Sergios Theodoridis
April 2015
Intermediate to advanced content levelIntermediate to advanced
1062 pages
40h 35m
English
Academic Press
Content preview from Machine Learning
Chapter 6

The Least-Squares Family

Abstract

In Chapter 6, the sum of least-squares cost function is reconsidered. The LS estimator is rederived via geometric arguments and its properties are discussed. The Ridge regression formulation is viewed via geometric arguments. The SVD matrix factorization method is presented and the concept of low rank matrix approximation is introduced. Emphasis is given on the RLS algorithm for the iterative solution of the LS cost function and its relation to Newton’s optimization method is established. The Coordinate descent scheme for iterative optimization is defined as an alternative to the steepest descent and Newton’s approaches. Finally, the method of total-least-squares is reviewed.

Keywords

Least-squares ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning

Machine Learning

Mohssen Mohammed, Muhammad Badruddin Khan, Eihab Mohammed Bashier
Machine Learning

Machine Learning

Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das
Machine Learning Algorithms

Machine Learning Algorithms

Giuseppe Bonaccorso
Introducing Machine Learning

Introducing Machine Learning

Dino Esposito, Francesco Esposito

Publisher Resources

ISBN: 9780128015223