O'Reilly logo

Machine Learning by Sergios Theodoridis

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

13.6 Sparse Bayesian Learning (SBL)

In Section 13.3, the prior for each one of the unknown parameters, θk,k = 0,1,…,K − 1, were given the liberty to have their own variances, σk2:=1αksi132_e. In turn, these variances were treated as hidden random variables and a prior was assigned to each of them in terms of a number of hyperparameters.

In [75, 81], the model was slightly modified. The concept of using different variances for the priors was retained, but the variances were treated as deterministic parameters and not as random ones.2 In this context, the task becomes a generalization of the one treated in Section 12.6, and it is built upon the following ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required