In the limit ${M}_{1}\to \infty $, with ${M}_{1}\mathrm{sin}\theta >0(1)$

$\underset{{M}_{1}\to \infty}{\mathrm{lim}}\frac{{p}_{t2}}{{p}_{t1}}={\epsilon}_{\mathrm{lim}}^{\frac{\gamma}{\gamma -1}}{\left(\frac{2\gamma}{\gamma +1}{M}_{1}^{2}{\mathrm{sin}}^{2}\theta \right)}^{\frac{-1}{\gamma -1}}$ (A.64)

$\frac{{s}_{2}-{s}_{1}}{R}=\mathrm{ln}{\left(\frac{2\gamma}{\gamma +1}{M}_{1}^{2}{\mathrm{sin}}^{2}\theta {({\epsilon}_{\mathrm{lim}})}^{\gamma}\right)}^{\frac{1}{\gamma -1}}$ (A.65)

The maximum entropy rise occurs for $\theta =90\xb0$ (normal shock) and decreases as $\theta $ decreases for a ...

Get *Manned Spacecraft Design Principles* now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.