Controlled Markov Processes
13.1 Introduction
Controlled Markov processes are a class of processes that deal with decision making under uncertainty. These processes, which include the Markov decision process (MDP), the semi-Markov decision process (SMDP), and the partially observable Markov decision process (POMDP), can be viewed as mathematical models that are concerned with optimal strategies of a decision maker who must make a sequence of decisions over time with uncertain outcomes. These three decision processes are the subject of this chapter.
13.2 Markov Decision Processes
In MDP, a decision maker or agent can influence the state of the system by taking a sequence of actions that causes the system to optimize a predefined performance criterion. ...
Get Markov Processes for Stochastic Modeling, 2nd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.