Machine learning algorithms
Machine learning (ML) is a collection of data-driven algorithms that work without being explicitly programmed for a specific task. Unlike non-ML algorithms, they require (and learn by) the training data. ML algorithms are classified into supervised and unsupervised types.
Supervised learning means that the training data consists of input vectors and their corresponding output value as well. This means that the task is to establish relationships between inputs and outputs in a historical database, called the training set, and thus make it possible to predict outputs for future input values.
For example, banks have vast databases on previous loan transaction details. The input vector is comprised of personal information—such ...
Get Mastering Data Analysis with R now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.