O'Reilly logo

Mastering Java Machine Learning by Krishna Choppella, Dr. Uday Kamath

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Clustering

Clustering algorithms can be categorized in different ways based on the techniques, the outputs, the process, and other considerations. In this topic, we will present some of the most widely used clustering algorithms.

Clustering algorithms

There is a rich set of clustering techniques in use today for a wide variety of applications. This section presents some of them, explaining how they work, what kind of data they can be used with, and what their advantages and drawbacks are. These include algorithms that are prototype-based, density-based, probabilistic partition-based, hierarchy-based, graph-theory-based, and those based on neural networks.

k-Means

k-means is a centroid- or prototype-based iterative algorithm that employs partitioning ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required