Bayesian networks

Generally, all Probabilistic Graphical Models have three basic elements that form the important sections:

  • Representation: This answers the question of what does the model mean or represent. The idea is how to represent and store the probability distribution of P(X1, X2, …. Xn).
  • Inference: This answers the question: given the model, how do we perform queries and get answers. This gives us the ability to infer the values of the unknown from the known evidence given the structure of the models. Motivating the main discussion points are various forms of inferences involving trade-offs between computational and correctness concerns.
  • Learning: This answers the question of what model is right given the data. Learning is divided into two ...

Get Mastering Java Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.