O'Reilly logo

Mastering Java Machine Learning by Krishna Choppella, Dr. Uday Kamath

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Markov networks and conditional random fields

So far, we have covered directed acyclic graphs in the area of probabilistic graph models, including every aspect of representation, inference, and learning. When the graphs are undirected, they are known as Markov networks (MN) or Markov random field (MRF). We will discuss some aspects of Markov networks in this section covering areas of representation, inference, and learning, as before. Markov networks or MRF are very popular in various areas of computer vision such as segmentation, de-noising, stereo, recognition, and so on. For further reading, see (References [10]).

Representation

Even though a Markov network, like Bayesian networks, has undirected edges, it still has local interactions and distributions. ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required