Univariate time series analysis

We will focus on two methods to analyze and forecast a single time series: exponential smoothing and autoregressive integrated moving average (ARIMA) models. We will start by looking at exponential smoothing models.

Like moving average models, exponential smoothing models use weights for past observations. But unlike moving average models, the more recent the observation the more weight it is given relative to the later ones. There are three possible smoothing parameters to estimate: the overall smoothing parameter, a trend parameter, and smoothing parameter. If no trend or seasonality is present, then these parameters become null.

The smoothing parameter produces a forecast with the following equation:

Yt+1 ...

Get Mastering Machine Learning with R - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.