When we discussed the Gaussian mixture algorithm, we defined it as Soft K-means. The reason is that each cluster was represented by three elements: mean, variance, and weight. Each sample always belongs to all clusters with a probability provided by the Gaussian distributions. This approach can be very useful when it's possible to manage the probabilities as weights, but in many other situations, it's preferable to determine a single cluster per sample. Such an approach is called hard clustering and K-means can be considered the hard version of a Gaussian mixture. In fact, when all variances Σi → 0, the distributions degenerate to Dirac's Deltas, which represent perfect spikes centered at a specific point. In this scenario, the only ...
K-means
Get Mastering Machine Learning Algorithms now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.