23
Deep Belief Networks
In this chapter, we're going to present two probabilistic generative models that employ a set of latent variables to represent a specific data generation process. Restricted Boltzmann Machines (RBMs), proposed in 1986, are the building blocks of a more complex model, called a Deep Belief Network (DBN), which is capable of capturing complex relationships among features at different levels (in a way not dissimilar to a deep convolutional network). Both models can be used in unsupervised and supervised scenarios as preprocessors or, as is usual with DBN, fine-tuning the parameters using a standard backpropagation algorithm.
In particular, we will discuss:
- Markov random fields (MRF)
- RBM, including the Contrastive Divergence ...
Get Mastering Machine Learning Algorithms - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.