O'Reilly logo

Mastering Predictive Analytics with R - Second Edition by Rui Miguel Forte, James D. Miller

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Singular value decomposition

In a real-world recommender system, the rating matrix will eventually become very large as more users are added to the system and the list of items being offered grows. As a result, we may want to apply a dimensionality reduction technique to this matrix. Ideally, we would like to retain as much information as possible from the original matrix while doing this. One such method that has applications across a wide range of disciplines uses singular value decomposition, or SVD as it is commonly abbreviated to.

SVD is a matrix factorization technique that has a number of useful applications, one of which is dimensionality reduction. It is related to the PCA method of dimensionality reduction that we saw in Chapter 1,

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required