Improving models with feature engineering

Now that we have seen how feature engineering techniques help in building predictive models, let's try and improve the performance of these models and evaluate whether the newly built model works better than the previous built model. Then, we will talk about two very important concepts that you must always keep in mind when doing predictive analytics, and these are the reducible and irreducible errors in your predictive models.

Let's first import the necessary modules, as shown in the following screenshot:

So, let's go to the Jupyter Notebook and take a look at the imported credit card default dataset ...

Get Mastering Predictive Analytics with scikit-learn and TensorFlow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.