Bayesian and Markov networks
Until now, we have discussed two different models for representing graphical models. Each of these can represent independence constraints that the other cannot. In this section, we will look at the relationship between these two models.
Converting Bayesian models into Markov models
Both Bayesian models and Markov models parameterize a probability distribution using a graphical model. Further, these structures also encode the independencies among the random variable. So, when converting a Bayesian model into a Markov one, we have to look from the following two perspectives:
- From the perspective of parameterization, that is, representing the probability distribution of the Bayesian model using a fully parameterized Markov ...
Get Mastering Probabilistic Graphical Models Using Python now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.