O'Reilly logo

Mastering Probabilistic Graphical Models Using Python by Abinash Panda, Ankur Ankan

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Parameter learning

In the previous sections, we have been discussing the general concepts related to learning. Now, in this section, we will be discussing the problem of learning parameters. In this case, we will already know the networks structure and we will have a dataset, Parameter learning, of full assignment over the variables. We have two major approaches to estimate the parameters, the maximum likelihood estimation and the Bayesian approach.

Maximum likelihood estimation

Let's take the example of a biased coin. We want to predict the outcome of this coin using previous data that we have about the outcomes of tossing it. So, let's consider that, previously, ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required