O'Reilly logo

Mastering Python Data Visualization by Kirthi Raman

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Principal component analysis

Principal component analysis (PCA) transforms the attributes of unlabeled data using a simple rearrangement and transformation with rotation. Looking at the data that does not have any significance, you can find ways to reduce dimensions this way. For instance, when a particular dataset looks similar to an ellipse when run at a particular angle to the axes, while in another transformed representation moves along the x axis and clearly has signs of no variation along the y axis, then it may be possible to ignore that.

k-means clustering is appropriate to cluster unlabeled data. Sometimes, one can use PCA to project data to a much lower dimension and then apply other methods, such as k-means, to a smaller and reduced ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required