Chapter 8: Model-Based Methods

All of the deep reinforcement learning (RL) algorithms we have covered so far were model-free, which means they did not assume any knowledge about the transition dynamics of the environment but learned from sampled experiences. In fact, this was a quite deliberate departure from the dynamic programming methods to save us from requiring a model of the environment. In this chapter, we swing the pendulum back a little bit and discuss a class of methods that rely on a model, called model-based methods. These methods can lead to improved sample efficiency by several orders of magnitude in some problems, making it a very appealing approach, especially when collecting experience is as costly as in robotics. Having said ...

Get Mastering Reinforcement Learning with Python now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.