2 Some basic functions and equations
The discussion of functions of one real variable is continued in this chapter by considering three classes of functions that play an important role in physical sciences. They are: simple algebraic functions; trigonometric functions; logarithms and exponentials.
2.1 Algebraic functions
Here we discuss polynomials and the more complicated functions that can be defined in terms of them.
2.1.1 Polynomials
The polynomial function has the general form
where ai(i = 0, 1, 2, …, n) are constants, n is a non-negative integer (i.e. including zero), and the symbol Σ means that a sum is to be taken of all terms labelled by the indices 0, 1, 2, …, n. The value of n defines the order (or degree) of the polynomial. The expression x3 − 3x2 − 6x + 8 plotted in Figure 1.1 is therefore a polynomial of order 3.
The roots of polynomials are defined as the solutions of the equation
and correspond to the points where a graph of Pn(x) crosses the x-axis. For first-order polynomials, (2.2) is a linear equation of the form
(2.3)
where a and b are constants. This has one root, which is trivially given by x = −b/a.
For second-order polynomials, (
Get Mathematics for Physicists now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.