O'Reilly logo

Mathematics for Physicists by Graham Shaw, Brian R. Martin

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

5 Series and expansions

Perhaps the most important application of the higher derivatives introduced in Section 3.4 is that, provided they exist, they enable functions in the neighbourhood of a given point to be approximated by polynomials in such a way that the accuracy of the approximation increases as the order of the polynomials increases. Such so-called Taylor expansions are useful because the resulting polynomials are often much easier to study and evaluate than the original functions themselves, and they have many applications, as we will see. Firstly, however, we must introduce some basic ideas about series and expansions in general.

5.1 Series

A series is the sum u0 + u1 + u2 + ⋅⋅⋅ of an ordered sequence {un} of elements un(n = 1, 2, … ). The elements may be numbers, for example , obtained from

or functions, such as un = 1, xx2, …  , obtained from

and the sequence may contain a finite number of (N + 1) terms,

or an infinite number of terms

where ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required