O'Reilly logo

Mathematics for Physicists by Graham Shaw, Brian R. Martin

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

15 Series solutions of ordinary differential equations

In this chapter we will extend our discussion of ordinary differential equations (ODEs) to include linear second-order equations of the form

(15.1) Unnumbered Display Equation

where the coefficients p(x) and q(x) are no longer restricted to constants, but may be arbitrary functions. Many ways of solving such equations apply only to a very limited range of equations, or require some prior knowledge of the solution. One such method will be mentioned at the end of Section 15.1.3. Otherwise we will confine ourselves to the most important method, which is to seek a solution in the form of a power series expansion about a particular point x = x0.

This method is introduced in Section 15.1 and then, after a brief discussion of differential operators and eigenvalue equations, illustrated by applying it to two eigenvalue equations that are particularly important in physics.

15.1 Series solutions

The existence of solutions in the form of power series expansions about a particular point x = x0 depends on the behaviours of p(x) and q(x) in the neighbourhood of x0. Three types of behaviour need to be distinguished. If p(x) and q(x) are finite, single-valued and differentiable, then x0 is called a regular or ordinary point and (15.1) is said to be regular at x = x0. In this case, the limits of p(x) and q(x) as xx0 both exist, that is, are finite. If either ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required