O'Reilly logo

Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach by Hong Xie, Chaoqun Ma, Guojun Gan

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

CHAPTER 4

LEBESGUE-STIELTJES MEASURES

The Lebesgue measure is a special measure defined on subsets of Euclidean spaces and is the standard way of measuring the length, area, and volume of these subsets. In this chapter, we define the Lebesgure measure and present some relevant theorems.

4.1 Basic Concepts and Facts

Definition 4.1 (Lebesgue-Stieltjes Measure). A Lebesgue-Stieltjes measure on R = (−∞, ∞) is a measure μ on such that μ() < ∞ for each bounded interval R.

Definition 4.2 (Distribution Function). A distribution function on R is a map F : RR that satisfies the following conditions:

(a) F is increasing; that is, a < b implies F(a) ≤ F(b).
(b) F is right-continuous:

equation

where xx+0 means that x > x0 and x converges to x0.

Definition 4.3 (Lebesgue Measure). The Lebesgue-Stieltjes measure μ on R defined by

equation

is called the Lebesgue measure on (see Theorem 4.1). The completion

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required