## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

Robert Newcomb

# 1.1 Introduction

Many response variables in clinical trials are binary: the treatment was successful or unsuccessful; the adverse effect did or did not occur. Binary variables are summarized by proportions, which may be compared between different arms of a study by calculating either an absolute difference of proportions or a relative measure, the relative risk or the odds ratio. In this article we consider several point and interval estimates for the absolute difference between two proportions, for both unpaired and paired study designs. The simplest methods encounter problems when numerators or denominators are small; accordingly, better methods are introduced. Because confidence interval methods for differences of proportions are derived from related methods for the simpler case of the single proportion, which itself can also be of interest in a clinical trial, this case is also considered in some depth. Illustrative examples relating to data from two clinical trials are shown.

# 1.2 Preliminary Issues

In most clinical trials, the unit of data is the individual, and statistical analyses for efficacy and safety outcomes compare responses between the two (or more) treatment groups. When subjects are randomized between these groups, responses of subjects in one group are independent of those in the other group. This leads to unpaired analyses. Crossover and split-unit designs require paired analyses. These have many features in common ...

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required