Chapter 12
Review of Analytic Techniques
In this chapter, we recall the definitions and properties of the mathematical infrastructure
needed to accommodate generating functions (GFs). While we include sufficient material for
our uses here, the reader who would like to get more deeply into these topics needs additional
sources; happily, excellent texts exist. We recommend P. Henrici [62] for a detailed modern
coverage; all our current needs are satisfied by the first chapter there.
12.1 Complex Numbers
We start with a reprise of complex numbers.
Definition 12.1 A complex number
1
is an ordered pair of real numbers. A standard notation
is z = (x,y), where the real number x is called the real part of the complex number z, and the
real number y is called the imaginary part of z. The common notation for these components
is
ℜz = x, ℑz = y
Two complex numbers are equal when their real and imaginary components are equal sepa-
rately. The set of all ordered pairs of real numbers is called the set or the field of complex
numbers, denoted by C, if the following arithmetic operations hold. Let z
1
= (x
1
,y
1
), z
2
=
(x
2
,y
2
) be two complex numbers; they can be manipulated as follows:
1. S um. Addition is defined as
z
1
+ z
2
= (x
1
+ x
2
, y
1
+ y
2
).
2. Difference. S ubtraction is similarly defined via
z
1
−z
2
= (x
1
−x
2
, y
1
−y
2
).
1
Complex numbers were so named by Carl Friedrich Gauss (1777–1855), but were known to mathematicians
for several centuries earlier. The symbol i for the imaginary unit was introduced by Leonhard Euler in 1777.
661
662
Chapter 12. Review of Analytic Techniques
3. Multiplication. The product is given by
z
1
z
2
= (x
1
x
2
−y
1
y
2
,x
1
y
2
+ x
2
y
1
).
4. Division. This is easily derived from the multiplication:
z
1
z
2
=
x
1
x
2
+ y
1
y
2
x
2
2
+ y
2
2
,
x
2
y
1
−x
1
y
2
x
2
2
+ y
2
2
. ⊳
While the real numbers constitute the real line, complex numbers span the complex plane.
We denote by 1 = (1,0) and i = (0,1) the unit vectors along the coordinate axes Ox and Oy.
In electrical engineering, it is common to denote these unit vectors as i = (1,0) and j = (0,1).
The abscissa is also called in this context the real axis; naturally, the ordinate then becomes
the imaginary axis.
The definition of the multiplication operation provides (0,1) ×(0,1) = (−1,0), or i
2
= −1,
so we see that the imaginary unit is, up to a sign,
√
−1. In other words:
√
−1 = ±i.
Let the projections of a complex number z on these axes be x = ℜz and y = ℑz. Then the
representation of z in terms of these components is
z = x1 + yi or simply z = x + iy. (12.1)
This is called the Cartesian form of a complex number. In MAPLE, the imaginary unit is
denoted by I, hence this number would be written as z = x + Iy. There is no difference
between x + iy and x + yi; for brevity w e write x instead of x + i0, and iy instead of 0 + iy.
The former complex number is said to be
pure real
and the latter—a
pure imaginary
.
6
-
.
.
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..... ..... ..... ..... .....
.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
x
1
x
2
y
1
y
2
z
1
= x
1
+ iy
1
z
2
= x
2
+ iy
2
z
1
+ z
2
= (x
1
+ x
2
) + i(y
1
+ y
2
)
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
z = x + iy
z = x −iy
x
y
θ
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
]
Figure 662: (a) Addition of complex numbers (b) Polar representation
Definition 12.2 The complex number x −iy is called the conjugate of the complex number
z = x + iy and is denoted by z = x −iy. ⊳
Multiplications or divisions are easier—and more natural—in the polar representation of
complex numbers, than in the Cartesian form (12.1). We place the “pole” at the origin 0 of
Get Methods in Algorithmic Analysis now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.