Symbol Meaning
t Time
t
1/2
Radionuclide half life
T Absolute temperature
v Volume
V Voltage
w Width
x Amplitude
d
Distance between the neighboring atomic planes (for graphite
d
¼ 0.335 nm)
D
Particle kinetic energy transferred to lattice vibrations
3
Energy released per atom
e
0
Permittivity of vacuum,
3
0
¼ 8.85 x 10
14
F/cm
h
Efficiency
Q
Period of oscillation
m
Reduced mass
r
Density of substance
s
Conductivity
s
Radionuclide mean life time
4
Electric potential
w Indicates order of magnitude
References
[1] S. Tajima, Aluminum and manganese as anodes for dry and reserve batteries, J. Power Sources 11 (1984)
155–161.
[2] Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review, J. Power Sources
110 (2002) 1–10.
[3] W.S.D. Wilcock, P.C. Kauffman, Development of a seawater battery for deep-water applications, J. Power
Sources 66 (1997) 71–75.
[4] M.A. Klochko, E.J. Casey, On the possible use of titanium and its alloys and compounds as active
materials in batteries: A review, J. Power Sources 2 (1977/78) 201–232
[5] S. Downey, Small Energy Sources, SRC/NSF Forum on Nano-Morphic Systems: Processes, Devices, and
Architectures, Stanford University, Stanford, CA, November 8–9, 2007.
[6] A. Heller, Potentially implantable miniature batteries, Anal. Bioanal. Chem. 385 (2006) 469–473.
[7] W. Shin, J. Lee, Y. Kim, H. Steinfink, A. Heller, Ionic conduction in Zn
3
(PO
4
)
2
-4H
2
O enables efficient
discharge of the zinc anode in serum, J. Amer. Chem. Soc. 127 (2005) 14590.
[8] W. Shin, Miniature bio-fuel cell and Zn-Ag/AgCl battery in physiological condition, SRC/NSF Forum on
Nano-Morphic Systems: Processes, Devices, and Architectures, Stanford University, Stanford, CA,
November 8–9, 2007.
[9] N. Mano, F. Mao, W. Shin, T. Chen, A. Heller, A miniature biofuel cell operating at 0.78 V, Chem.
Commun. (2003) 518–519.
[10] A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys. (2004) 209–216.
46 CHAPTER 2 Energy in the small: Integrated micro-scale energy sources
[11] N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less Glucose-O
2
biofuel cell and
its operation in a living plant, J. Amer. Chem. Soc. 125 (2003) 6588–6594.
[12] D. Wu, R. Tucker, H. Hess, Caged ATP Fuel for Bionanodevices, IEEE Trans. Adv. Pack. 28 (2005) 594.
[13] H. Hess, Biomolecular motors for directed assembly and hybrid devices, SRC/NSF Forum on Nano-Morphic
Systems: Processes, Devices, and Architectures, Stanford University, Stanford, CA, November 8–9, 2007.
[14] Food and Nutrition Board of the Institute of Medicine, www.iom.edu
[15] E. Rojas, L.A. Herrera, L.A. Poirier, P. Ostrosky-Wegman, Are metals dietary carcinogens? Mutation Res.
443 (1999) 157–181.
[16] U.S. EPA Drinking Water Regulations, www.epa.gov
[17] R. Ko
¨
tz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochem. Acta 45
(2000) 2483–2498.
[18] A. Lewandowski, M. Galinski, Practical and theoretical limits for electrochemical double-layer capacitors,
J. Power Syst. 173 (2007) 822–828.
[19] E. Frackowiak, Supercapacitors based on carbon materials and ionic liquids, J. Braz. Chem. Soc. 17 (2006)
1074–1082.
[20] G. Yushin, Integrated supercapacitors for nano-morphic systems, SRC/NSF Forum on Nano-Morphic
Systems: Processes, Devices, and Architectures, Stanford University, Stanford, CA, November 8–9, 2007.
[21] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon
capacitance at pore sizes less than 1 nanometer, Science 313 (2006) 1760–1763.
[22] K.A. Williams, P.C. Eklund, Monte Carlo simulations of H
2
physisorption of finite-diameter carbon
nanotube ropes, Chem. Phys. Lett. 320 (2000) 352–358.
[23] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004)
4245–4269.
[24] L. S-Kou, L. N-Wu, Investigation of pseudocapacitive charge-storage reaction of MnO
2
$nH
2
O super-
capacitors in aqueous electrolytes, J. Electrochem. Soc. 153 (2006) A1317–1324.
[25] L. S-Kou, L. N-Wu, Electrochemical capacitor of MnFe
2
O
4
with NaCl electrolyte, Electrochem. and
Solid-State Lett. 8 (2005) A495–A499.
[26] N.A. Choudhury, S. Sampath, A.K. Shukla, Gelatin hydrogel electrolytes and their application to elec-
trochemical supercapacitors, J. Electrochem. Soc. 155 (2008) A74–A81.
[27] H. J-Sung, S.-J. Kim, K.-H. Lee, Fabrication of microcapacitors using conducting polymer microelec-
trodes, J. Power Sources 124 (2003) 343–350.
[28] H. J-Sung, S.-J. Kim, S.-H. Jeong, E.-H. Kim, K.-H. Lee, Flexible micro-supercapacitors, J. Power Sources
162 (2006) 1467–1470.
[29] P.M. Raj, D. Balaraman, V. Govind, I.R. Abothu, L. Wan, R. Gerhardt, et al., Processing and dielectric
properties of nanocomposite thin film supercapacitors for high-frequency embedded decoupling, IEEE
Trans. Comp. Packaging Techn. 30 (2007) 569–578.
[30] L. S-Kuo, L. N-Wu, Composite supercapacitor containing tin oxide and electroplated ruthenium oxide,
Electrochem. and Solid-State Lett. 6 (2003) A85–A87.
[31] H. Jimbo, N. Miki, Gastric-fluid-utilizing micro-battery for micro medical devices, Sensors and Actuators
B134 (2008) 219–224.
[32] M. Sun, G.A. Justin, P.A. Roche, J. Zhao, B.L. Wessel, Y. Zhang, R.J. Sclabassi, Passing data and
supplying power to neural implants, IEEE Eng, Medicine and Biology 25 (2006) 39–46.
[33] S. Kerzenmacher, J. Ducree, R. Zengerle, F. von. Stetten, Energy harvesting by implantable abiotically
catalyzed glucose fuel cells, J. Power Sources 182 (2008) 1–17.
[34] E. Kjeang, N. Djilali, D. Sinton, Microfluidic fuel cells: A review, J. Power Sources 186 (2009) 353–369.
[35] A. Lal, Radioisotope Energy Sources, SRC/NSF Forum on Nano-Morphic Systems: Processes, Devices,
and Architectures, Stanford University, Stanford, CA, November 8–9, 2007.
References 47

Get Microsystems for Bioelectronics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.